Put the following 3 equivalences immediately into your toolbox!
Absorption: $P + PQ = P$
Adjacency: $PQ + PQ' = P$
Reduction: $P+P'Q = P+Q$
From what you have, $Q'$ absorbs both $Q'R$ and $Q'V$ so you can get rid of those.
Also, $Q' $ reduces $QSU$ to $SU$, which absorbs $STU$. So now you have:
$SU + S'R + S'V + RU + UV + Q'$
Use Adjacency to expand $UV$ to $SUV+S'UV$ ... Then $SUV$ gets absorbed by $SU$ and $S'UV$ by $S'V$
Likewise, use Adjacency to expand $RU$ to $RUS+RUS'$ ... Which get absorbed by $SU$ and $S'R$ respectively, giving you:
$SU + S'R + S'V + Q'$
So, again, the whole thing from what you have:
$Q.S.U + Q'.R + Q'.V + S'.R + S'.V + R.U + U.V + Q' + S.T.U$ = (Absorption)
$Q.S.U + S'.R + S'.V + R.U + U.V + Q' + S.T.U$ = (Reduction)
$S.U + S'.R + S'.V + R.U + U.V + Q' + S.T.U$ = (Absorption)
$S.U + S'.R + S'.V + R.U + U.V + Q'$ = (Adjacency)
$S.U + S'.R + S'.V + R.U.S + R.U.S' + S.U.V + S'.U.V. + Q'$ = (Absorption)
$S.U + S'.R + S'.V + Q'$