1

For a given sequence $a_{1},a_{2},a_{3},....,a_{n}$.

If $\lim_{n\rightarrow \infty} a_{n} = a.$ Then $\displaystyle \lim_{n\rightarrow \infty}\frac{1}{\ln (n)}\sum^{n}_{k=1}\frac{a_{k}}{k}$

Try: Using Stolz Method ,

Let $\displaystyle \frac{a_{n}}{b_{n}} = \lim_{n\rightarrow \infty}\frac{1}{\ln (n)}\sum^{n}_{k=1}\frac{a_{k}}{k}$

Then $$\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} = \lim_{n\rightarrow \infty}\frac{a_{n+1}}{(n+1)\ln(1+\frac{1}{n})}=a_{n+1}$$

Answer given is $a$,

Could some help me Why $a_{n+1}=a_{n}$ for $n\rightarrow \infty,$ thanks

DXT
  • 11,241
  • 1
    A more general result is true. If $a_n\to L$ then any subsequence of $a_n$ (like $a_{n+1},a_{2n}$) also converges to $L$ and the proof is immediate via definition of limit. This however does not mean that $a_{n+1}=a_n$ for large $n$. It just means they have same limit. Two functions can have same limits without being equal. – Paramanand Singh Nov 30 '18 at 02:58
  • 1
    https://math.stackexchange.com/questions/2216309/if-lim-limits-n-to-inftya-n-a-then-what-is-the-value-of-lim-limits-n-t/2216919#2216919 – jacky Dec 11 '19 at 06:44

2 Answers2

3

By Stolz-Cesaro

$$\frac{a_{n}}{b_{n}} = \lim_{n\rightarrow \infty} \frac{\sum^{n}_{k=1}\frac{a_{k}}{k}}{\ln (n)}$$

then

$$\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} =\lim_{n\rightarrow \infty}\frac{\frac{a_{n+1}}{n+1}}{\ln (n+1)-\ln n}=\lim_{n\rightarrow \infty}\frac{\frac{n}{n+1}a_{n+1}}{\ln \left(1+\frac1n\right)^n} \to a$$

user
  • 154,566
1

What the author of the solution is using is that $\lim_{n \to \infty}a_{n+1} = \lim_{n \to \infty}a_n$.

Therefore, we may rewrite the last step in a more rigorous way as

$\lim_{n \to \infty}\frac{a_{n+1}}{(n+1)ln(1+\frac{1}{n})} = \frac{\lim_{n \to \infty}a_{n+1}}{lim_{n \to \infty}ln(1+\frac{1}{n})^{n+1}} = \frac{a}{\log e} = a$, where I also used the fact that $ lim_{n \to \infty}(1+\frac{1}{n})^{n+1} = e$

It doesn't have to be the case that $a_{n+1} = a_n$ for the solution to work.

Sorin Tirc
  • 2,087
  • I have a doubt why $\lim_{n\rightarrow \infty}a_{n+1}=a.$ please explain me – DXT Nov 29 '18 at 14:52
  • @DurgeshTiwari Just by the definition of the limit: $\lim_{n \to \infty}a_n = a$ is equivalent to $|a_n-a| < \epsilon$ for all n suff large(for any fixed $\epsilon$). This would also imply that $|a_{n+1}-a| < \epsilon$ for all n sufficiently large and any (fixed) $\epsilon$. – Sorin Tirc Nov 29 '18 at 15:30