For a given sequence $a_{1},a_{2},a_{3},....,a_{n}$.
If $\lim_{n\rightarrow \infty} a_{n} = a.$ Then $\displaystyle \lim_{n\rightarrow \infty}\frac{1}{\ln (n)}\sum^{n}_{k=1}\frac{a_{k}}{k}$
Try: Using Stolz Method ,
Let $\displaystyle \frac{a_{n}}{b_{n}} = \lim_{n\rightarrow \infty}\frac{1}{\ln (n)}\sum^{n}_{k=1}\frac{a_{k}}{k}$
Then $$\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} = \lim_{n\rightarrow \infty}\frac{a_{n+1}}{(n+1)\ln(1+\frac{1}{n})}=a_{n+1}$$
Answer given is $a$,
Could some help me Why $a_{n+1}=a_{n}$ for $n\rightarrow \infty,$ thanks