1

Is the following computations correct?

Can the Heaviside step function have an arbitrary function as argument?

It seams reasonable and leads to the correct/same answers, but I have not been able to find any source of information about it.

Does anyone know where I can find information about the Heaviside step function with a function as argument?


$f(t) := |t| = H(t)t+\left((1-H(t)\right)(-t)=\left[2H(t)-1\right]t$

$g(t) := \sin(t)$


$f^\prime(t) = 2H(t)-1 + 2t\delta(t)= 2H(t)-1 $

$g^\prime(t) = \cos(t)$


$f^{\prime\prime}(t) = 2\delta(t) $

$g^{\prime\prime}(t) = -\sin(t)$


$h(t) := |\sin(t)|= f\left[(g(t)\right]= \left[2H(\sin(t))-1\right]\sin(t)$

$h^\prime(t) = f^\prime\left[g(t)\right] g^\prime(t) = \left[2H\left[\sin(t)\right]-1\right]\cos(t)$

$h^{\prime\prime}(t) = f^{\prime\prime}\left[g(t)\right] \left[g^\prime(t)\right]^2 + f^\prime\left[g(t)\right] g^{\prime\prime}(t) = \\ = 2\delta\left[\sin(t)\right]\cos^2(t) + \left[2H\left[\sin(t)\right]-1\right]|\left[-\sin(t)\right]=\\ = 2\delta\left[\sin(t)\right]\cos^2(t) -h(t) =\\ = \{\sin(t)=0 \Leftrightarrow t=\pm n\pi,\; n\in\mathbb{Z}\Leftrightarrow \cos^2(t)=1\}=\\ =2\delta\left[\sin(t)\right]-|\sin(t)|$

Filip
  • 465

0 Answers0