$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\bbx{\mbox{Nothe that}\
\sum_{k = 0}^{n}{n + k \choose k}2^{n - k} =
\left. 2^{n}\sum_{k = 0}^{n}{n + k \choose k}x^{k}
\,\right\vert_{\ x\ =\ 1/2}}\label{1}\tag{1}
\end{equation}
Let
$\ds{\mrm{f}\pars{x} \equiv \sum_{k = 0}^{n}{n + k \choose k}x^{k}}$ such that
$\ds{\bbox[#ffd,10px,border:1px groove navy]
{\sum_{k = 0}^{n}{n + k \choose k}2^{n - k} =
2^{n}\,\mrm{f}\pars{1 \over 2}}\qquad}$ and
\begin{align}
\mrm{f}'\pars{x} & =
\sum_{k = 1}^{n}{\pars{n + k}! \over \pars{k - 1}!\, n!}x^{k - 1} =
\sum_{k = 0}^{n - 1}{\pars{n + 1 + k}! \over k!\, n!}x^{k} \\[5mm] & =
\sum_{k = 0}^{n - 1}\pars{n + 1 + k}{n + k \choose k}x^{k}
\\[5mm] & =
\sum_{k = 0}^{n}\pars{n + 1 + k}{n + k \choose k}x^{k} -
\pars{2n + 1}{2n \choose n}x^{n}
\\[5mm] & =
\pars{n + 1}\,\mrm{f}\pars{x} + x\,\mrm{f}'\pars{x} -
\pars{2n + 1}{2n \choose n}x^{n}
\end{align}
which leads to
\begin{align}
&\mrm{f}'\pars{x} - {n + 1 \over 1 - x}\,\mrm{f}\pars{x} =
-\pars{2n + 1}{2n \choose n}{x^{n} \over 1 - x}\,,\qquad
\left\{\begin{array}{lcl}
\ds{\mrm{f}\pars{0}} & \ds{=} & \ds{1}
\\[2mm]
\ds{\mrm{f}\pars{1 \over 2}} & \ds{=} & \ds{\LARGE ?}
\end{array}\right.
\\[5mm] &\
\totald{\bracks{\pars{1 - x}^{n + 1}\,\mrm{f}\pars{x}}}{x} =
-\pars{2n + 1}{2n \choose n}\pars{x - x^{2}}^{n}
\\[1cm] &\
{1 \over 2^{n + 1}}\,\mrm{f}\pars{1 \over 2} - 1
\\ = &\
-\pars{2n + 1}{2n \choose n}\,
\underbrace{\int_{0}^{1/2}\pars{x - x^{2}}^{n}\,\dd x}
_{\ds{1/2 \over \pars{2n + 1}{2n \choose n}}}
\implies\bbx{\mrm{f}\pars{1 \over 2} = 2^{n}}
\end{align}
Then,
$$
\sum_{k = 0}^{n}{n + k \choose k}2^{n - k} =
2^{n}\,\mrm{f}\pars{1 \over 2} = \bbx{\large 4^{n}}
$$