This is true if and only if $Fv-Gu\in \Bbb{C}$.
To see why, let
$$ M = \newcommand\bmat{\begin{pmatrix}}\newcommand\emat{\end{pmatrix}}\bmat F & u\\G
& v\emat.$$
Then $$\bmat A \\ B \emat = M \bmat y \\ x-c \emat.$$
Then if $(A,B)=(y,x-c)$, we have that $y=e_{11}A + e_{12}B$ and $(x-c)=e_{21}A + e_{22}B$.
Then the matrix
$$ E = \bmat e_{11} & e_{12} \\ e_{21} & e_{22} \emat $$ satisfies
$$ E\bmat A \\ B \emat = \bmat y \\ x-c \emat.$$
Thus $$ EM\bmat y \\ x-c \emat = \bmat y \\ x-c \emat.$$
Expanding this gives
$$ \bmat e_{11} F +e_{12} G & e_{11}u+e_{12}v \\ e_{21}F+e_{22}G & e_{21}u+e_{22}v\emat\bmat y \\ x-c\emat = \bmat y \\ x-c \emat.$$
Then
$$(e_{11}F+e_{12}G)y+(e_{11}u+e_{12}v)(x-c) = y,$$
which tells us immediately that $e_{11}u+e_{12}v=0$, and thus that
$e_{11}F+e_{12}G=1$.
Similarly, the fact that $$(e_{21}F+e_{22}G)y + (e_{21}u+e_{22}v)(x-c) = (x-c)$$
tells us that $e_{21}F+e_{22}G=0$ and $e_{21}u+e_{22}v=1$.
Hence $F$ and $G$ are relatively prime (and not just relatively prime, they generate the unit ideal), and $u$ and $v$ also generate the unit ideal.
Moreover, since $e_{11}u+e_{12}v=0$, we have $e_{11}u=-e_{12}v$, so since $u$ and $v$ are relatively prime, $e_{11} = h_1v$ and $e_{12}=-h_1u$. Then since
$e_{11}F+e_{12}G=1$, we have $h_1vF-h_1uG=1$. Therefore $Fv-Gu=1/h_1\in \Bbb{C}$.
Conversely if $Fv-Gu\in\Bbb{C}$, then $M$ is invertible, so $A$ and $B$ generate $(y,x-c)$.