Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $\psi (z)$.
$$
\eqalign{
& 1 - {1 \over {8 - 1}} + {1 \over {8 + 1}} - {1 \over {2 \cdot 8 - 1}} + {1 \over {2 \cdot 8 + 1}} + \cdots = \cr
& = 1 - \sum\limits_{1\, \le \,n} {{1 \over {8n - 1}}} + \sum\limits_{1\, \le \,n} {{1 \over {8n + 1}}} = \cr
& = 1 - {1 \over 8}\left( {\sum\limits_{1\, \le \,n} {{1 \over {n - 1/8}}} - \sum\limits_{1\, \le \,n} {{1 \over {n + 1/8}}} } \right) = \cr
& = 1 - {1 \over 8}\left( {\sum\nolimits_{\;n = 7/8}^{\;\infty } {{1 \over n}} - \sum\nolimits_{\;n = 9/8}^{\;\infty } {{1 \over n}} } \right) = \cr
& = 1 - {1 \over 8}\left( {\sum\nolimits_{\;n = 7/8}^{\;9/8} {{1 \over n}} } \right) = \cr
& = 1 - {1 \over 8}\left( {\psi (9/8) - \psi (7/8)} \right) = \cr
& = 1 - {1 \over 8}\left( {\psi \left( {1 + 1/8} \right) - \psi \left( {1 - 1/8} \right)} \right) = \cr
& = 1 - {1 \over 8}\left( {{1 \over {1/8}} + \psi \left( {1/8} \right) - \psi \left( {1 - 1/8} \right)} \right) = \cr
& = {1 \over 8}\left( {\psi \left( {1 - 1/8} \right) - \psi \left( {1/8} \right)} \right) = \cr
& = {1 \over 8}\left( {\pi \cot \left( {{\pi \over 8}} \right)} \right) = \cr
& = {{\pi \left( {1 + \sqrt 2 } \right)} \over 8} \cr}
$$
where:
$$
\Delta _{\,z} \psi \left( z \right) = \psi \left( {z + 1} \right) - \psi \left( z \right) = {1 \over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
\eqalign{
& \psi \left( z \right) = \Delta _{\,z} ^{ - 1} \left( {{1 \over z}} \right) = \sum\nolimits_z {{1 \over z}} \quad \Rightarrow \cr
& \Rightarrow \quad \sum\nolimits_{\;z = a}^{\;b} {{1 \over z}} = \psi \left( b \right) - \psi \left( a \right) \cr}
$$
and we used the Reflection formula for Digamma
$$
\psi \left( {1 - z} \right) = \psi \left( z \right) + \pi \cot \left( {\pi z} \right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
\int_{x = 0}^{\,1} {{{1 - x^{\,6} } \over {1 - x^{\,8} }}dx} \quad \mathop
= \limits^{x^{\,8} = y} \quad {1 \over 8}\int_{y = 0}^{\,1} {{{1 - y^{\,3/4} } \over {\left( {1 - y} \right)y^{\,7/8} }}dy}
$$
then consider that we have
$$
\eqalign{
& {{1 - y^{\,3/4} } \over {\left( {1 - y} \right)y^{\,7/8} }} = \cr
& = \left( {\left( {1 - y} \right)^{ - 1} y^{\, - 7/8} - \left( {1 - y} \right)^{ - 1} y^{\, - 1/8} } \right) \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {\left( {1 - y} \right)^{\varepsilon - 1} y^{\,1/8 - 1}
- \left( {1 - y} \right)^{\varepsilon - 1} y^{\,\,7/8 - 1} } \right) \cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
\eqalign{
& 8 \;\int_{x = 0}^{\,1} {{{1 - x^{\,6} } \over {1 - x^{\,8} }}dx} = \int_{y = 0}^{\,1} {{{1 - y^{\,3/4} } \over {\left( {1 - y} \right)y^{\,7/8} }}dy} = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {\int_{y = 0}^{\,1} {\left( {1 - y} \right)^{\varepsilon - 1} y^{\,1/8 - 1} dy}
- \int_{y = 0}^{\,1} {\left( {1 - y} \right)^{\varepsilon - 1} y^{\,\,7/8 - 1} dy} } \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {{\rm B}\left( {1/8,\varepsilon } \right) - {\rm B}\left( {7/8,\varepsilon } \right)} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {{{\Gamma \left( {1/8} \right)\Gamma \left( \varepsilon \right)}
\over {\Gamma \left( {1/8 + \varepsilon } \right)}}
- {{\Gamma \left( {7/8} \right)\Gamma \left( \varepsilon \right)} \over {\Gamma \left( {7/8 + \varepsilon } \right)}}} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {{{\Gamma \left( {1/8} \right)\Gamma \left( \varepsilon \right)}
\over {\psi \left( {1/8} \right)\varepsilon \;\Gamma \left( {1/8} \right)
+ \Gamma \left( {1/8} \right)}} - {{\Gamma \left( {7/8} \right)\Gamma \left( \varepsilon \right)}
\over {\psi \left( {7/8} \right)\varepsilon \;\Gamma \left( {7/8} \right) + \Gamma \left( {7/8} \right)}}} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \left( {{{\Gamma \left( \varepsilon \right)} \over {\psi \left( {1/8} \right)\varepsilon \; + 1}}
- {{\Gamma \left( \varepsilon \right)} \over {\psi \left( {7/8} \right)\varepsilon \; + 1}}} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \Gamma \left( \varepsilon \right)\left( {\left( {1 - \psi \left( {1/8} \right)\varepsilon \;} \right)
- \left( {1 - \psi \left( {7/8} \right)\varepsilon \;} \right)} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \varepsilon \,\Gamma \left( \varepsilon \right)\left( {\psi \left( {7/8} \right) - \psi \left( {1/8} \right)} \right) = \cr
& = \mathop {\lim }\limits_{\varepsilon \, \to \,0} \,\Gamma \left( {1 + \varepsilon } \right)\left( {\psi \left( {7/8} \right) - \psi \left( {1/8} \right)} \right) = \cr
& = \psi \left( {7/8} \right) - \psi \left( {1/8} \right) \cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
\eqalign{
& {{1 - y^{\,3/4} } \over {\left( {1 - y} \right)y^{\,7/8} }} = {{y^{\, - 7/8} - y^{\, - 1/8} } \over {\left( {1 - y} \right)}} = \cr
& = {{1 - y^{\, - 1/8} - \left( {1 - y^{\, - 7/8} } \right)} \over {\left( {1 - y} \right)}} \cr}
$$
and compare with the integral representation of Digamma
$$
\psi (s + 1) = - \gamma + \int_0^1 {{{1 - x^{\,s} } \over {1 - x}}dx}
$$