I don't know what is GMT. I looked it up on Wikipedia and it states $u = x - 1/x$ as Cauchy–Schlömilch substitution. Here is my solution that splits the integral into 4 integrals, each one of them uses $u = x - 1/x$. I will happily delete the answer if it is useless or wrong :)
$$\int^{\infty}_{-\infty} \dfrac{1}{1+ x^8} dx = -\dfrac{1}{2 \sqrt{2}}\int^{\infty}_{-\infty} \dfrac{x^2 - \sqrt{2}}{x^4 - \sqrt 2 x^2 + 1} + \dfrac{1}{2 \sqrt{2}}\int^{\infty}_{-\infty}\dfrac{x^2 + \sqrt{2}}{x^4 + \sqrt2 x^2 + 1} \\= -\dfrac{1}{2 \sqrt{2}}\int^{\infty}_{-\infty} \dfrac{x^2 + 1}{x^4 - \sqrt 2 x^2 + 1} +\dfrac{\sqrt{2} +1}{2 \sqrt{2}} \int^{\infty}_{-\infty} \dfrac{1}{x^4 - \sqrt 2 x^2 + 1} \\+ \dfrac{1}{2 \sqrt{2}}\int^{\infty}_{-\infty}\dfrac{x^2 + 1 }{x^4 + \sqrt2 x^2 + 1}+\dfrac{\sqrt2 -1}{2 \sqrt{2}}\int^{\infty}_{-\infty}\dfrac{1}{x^4 + \sqrt2 x^2 + 1} $$
$$\int^{\infty}_{-\infty} \dfrac{x^2 + 1}{x^4 - \sqrt 2 x^2 + 1} = \int^{\infty}_{-\infty} \dfrac{1 + 1/x^2}{ (x -1/x)^2 + 2 - \sqrt 2}$$
$u = x - 1/x, du = 1 + 1/x^2$
$$\int^{\infty}_{-\infty} \dfrac{1}{u^2 + (2 - \sqrt 2 )} du $$
$$J = \int^{\infty}_{-\infty} \dfrac{1}{x^4 - \sqrt 2 x^2 + 1} = 2 \int^{\infty}_{0} \dfrac{1}{x^4 - \sqrt 2 x^2 + 1}$$
$x = 1/t, dx = -1/t^2 dt$
$$J = 2 \int^{\infty}_{0} \dfrac{t^2}{t^4 - \sqrt 2 t^2 + 1} dt$$
Adding the two equations,
$$J = \int^{\infty}_{0} \dfrac{t^2 + 1}{t^4 - \sqrt 2 t^2 + 1} dt$$
This can be solved with $ u = t - 1/t$ like the previous equation.
$$\int^{\infty}_{-\infty}\dfrac{x^2 + 1 }{x^4 + \sqrt2 x^2 + 1} = \int^{\infty}_{-\infty}\dfrac{1 + 1/x^2 }{(x - 1/x)^2 + \sqrt2 + 2}$$
Similar to first integral, now.
$$I = \int^{\infty}_{-\infty}\dfrac{1}{x^4 + \sqrt2 x^2 + 1} = 2\int^{\infty}_{0}\dfrac{1}{x^4 + \sqrt2 x^2 + 1}$$
$x = 1/t, dx = -1/t^2 dt$
$$ I = \int^{\infty}_{0}\dfrac{t^2 + 1}{t^4 + \sqrt2 t^2 + 1} dt $$
Can be solved with $u = t - 1/t$ like other integrals here.