Forgive me, I am new to measure theory. I am trying to prove the Dominated Convergence Theorem by assuming Fatou's Lemma, here is what I have so far.
Fatou's Lemma:
Let $\{f_n\} $ be a sequence of nonnegative measurable functions s.t.
$f_n \rightarrow f$ a.e. x as $n \rightarrow \infty$,
then $\int f \leq $ lim$_{n \rightarrow \infty}$ inf $\int f_n$.
The DCT states:
Let $\{f_n\}$ be sequence of measurable functions s.t.
$f_n \rightarrow f$ a.e. x as $n \rightarrow \infty$,
if in addition we have
$\vert f(x) \vert \leq g(x)$ ; $g(x)$ integrable,
then $\int \vert f_n - f \vert \rightarrow 0$, as $n \rightarrow \infty$.
I know one way to prove this is you can define a set of elements bounded above by integer values so the functions are supported on a set of finite measure allowing the use of the bounded convergence theorem.
Now Fatou's Lemma takes into consideration the nonnegative functions, something I cannot assume with the DCT, but since the $f_n$ are all bounded above by an integrable function $g(x)$ could I rewrite $g(x)$ as its decomposition into $g^+ - g^-$?
My intuition says the result will "pop out" if I had non negativity? OR am I missing something else here?