find the KKT point of the following problem: $$\min\quad f(x_1,x_2)=(x_1-3)^{2}+(x_2-2)^{2}\\ subject\quad to\qquad \qquad \qquad \qquad \qquad\qquad\\ x_1^{2}+x_2^{2}\le5\\ x_1+2x_2=4\\ x_1\ge0,x_2\ge0$$
what I tried:
for the general problem: $$min\quad f(\textbf x)\\ s.t.\quad h_i(\textbf x)=0\quad (i=1,2,\dots ,m)\\ g_j(\textbf x)\ge0\quad (j=1,2,\dots,l)$$
where $\textbf x=(x_1,x_2,\dots,x_n)^{T}$
the KKT condition is
$$\nabla f(x^{*})-\sum_{j=1}^{l}\gamma_j^*\nabla g_j(x^*)-\sum_{i=1}^m\lambda_i^*\nabla h_i(x^*)=0\\ \gamma_j^*g_j(x^*)=0\quad (j=1,2,\dots,l)\\ \gamma_j^*\ge0\quad (j=1,2,\dots,l)$$ where $x^*=(x_1,x_2,\dots,x_n)^{T}$,$\gamma^*=(\gamma_1^*,\gamma_2^*,\dots,\gamma_l^*)^{T}$,$\lambda^*=(\lambda_1^*,\lambda_2^*,\dots,\lambda_m^*)^{T}$
$x^*$ is the KKT point if $x^*$ satisfies the KKT condition.
with this knowledge, for the specific problem above,
Let $$f(\textbf x)=(x_1-3)^{2}+(x_2-2)^{2}\\ g_1(\textbf x)=-x_1^2-x_2^2+5\\ g_2(\textbf x)=x_1\\ g_3(\textbf x)=x_2 h_1(x)=x_1+2x_2-4$$ (change $x_1^2+x_2^2\le5$ to the general form $-x_1^2-x_2^2+5\ge0$)
and $x^*=(x_1,x_2)^{T}$ is the KKT point,then we have: $$\nabla f(x^*)= \begin{bmatrix} 2(x_1-3)\\ 2(x_2-2)\\ \end{bmatrix}$$ $$\nabla g_1(x^*)= \begin{bmatrix} -2x_1\\ -2x_2\\ \end{bmatrix}$$ $$\nabla g_2(x^*)= \begin{bmatrix} 1\\ 0\\ \end{bmatrix}$$ $$\nabla g_2(x^*)= \begin{bmatrix} 0\\ 1\\ \end{bmatrix}$$ $$\nabla h_1(x^*)= \begin{bmatrix} 1\\ 2\\ \end{bmatrix}$$
the KKT condition is: $$\begin{bmatrix} 2(x_1-3)\\ 2(x_2-2)\\ \end{bmatrix}-\gamma_1\begin{bmatrix} -2x_1\\ -2x_2\\ \end{bmatrix}-\gamma_2\begin{bmatrix} 1\\ 0\\ \end{bmatrix}-\gamma_3\begin{bmatrix} 0\\ 1\\ \end{bmatrix}-\lambda_1\begin{bmatrix} 1\\ 2\\ \end{bmatrix}=0$$ $$\gamma_1(-x_1^2-x_2^2+5)=0$$ $$\gamma_2 x_1=0$$ $$\gamma_3 x_2=0$$ $$\gamma_1,\gamma_2,\gamma_3\ge0$$
we should get the KKT point $x^*$ by solving the equation set above.
For me, the problem here is that the equation set seems not solvable, so how to solve the equation, or I did it completely the wrong way?