I was looking at this Ramanujan phi-Function
Let: $$R(a)=\sum_{k=1}^{\infty}\frac{1}{(ak)^3-ak}\tag1$$ and this paper of the form,
$$\sum_{k=1}^{\infty}\frac{{2k \choose k}}{4^k}\tag2$$ and $$\sum_{k=1}^{\infty}\left[\frac{{2k \choose k}}{4^k}\right]^2\tag 3$$
By combining them together we have
$$S(a)=\sum_{k=1}^{\infty}\frac{{2k \choose k}}{4^k}\cdot \frac{1}{(ak)^3-ak}\tag4$$ and
$$T(a)=\sum_{k=1}^{\infty}\left[\frac{{2k \choose k}}{4^k}\right]^2\cdot \frac{1}{(ak)^3-ak}\tag5$$
The conjectured closed form for $(4)$ and $(5)$, where $a=2$ are
$$S(2)=\sum_{k=1}^{\infty}\frac{{2k \choose k}}{4^k}\cdot \frac{1}{(2k)^3-2k}=\frac{\pi}{4}-\ln(2)\tag6$$ and
$$T(2)=\sum_{k=1}^{\infty}\left[\frac{{2k \choose k}}{4^k}\right]^2\cdot \frac{1}{(2k)^3-2k}=\frac{6G-\pi\ln(4)-1}{\pi}\tag7$$
Where G is the Catalan's constant.
How can we prove these conjectures?