Given Burgers' equation: $u_{t}+\frac{1}{2}(u^{2})_{x}=0$ with the initial condition:
$$u(x,0) =\begin{cases} \displaystyle u_{l},\quad x <0 \\ \displaystyle u_{r},\quad x>0 \end{cases}$$
where $u_{l} < u_{r}$.
I understand how to find the solution:
$$u(x,t) =\begin{cases} \displaystyle u_{l},\quad x < u_{l}t \\ \displaystyle \frac{x}{t},\quad u_{l}t < x< u_{r}t \\ \displaystyle u_{r},\quad x>u_{r}t \end{cases}$$
I am not sure how to find the solution when $\frac{x}{t} = 0$. Would the solution just be this?
$$u(x,t) =\begin{cases} \displaystyle u_{l},\quad 0 < u_{l} \\ \displaystyle 0,\quad u_{l} < 0< u_{r} \\ \displaystyle u_{r},\quad 0>u_{r} \end{cases}$$