If it is ok to use $\lim_{u\to 0}\frac{\sin u}{u} = 1$, then a possible way is setting $x=\sin t$ and consider $t\to \frac{\pi}{2}^-$:
\begin{eqnarray*} \frac{\sqrt{\pi}-\sqrt{2\sin^{-1}(x)}}{\sqrt{1-x}}
& \stackrel{x=\sin t}{=} & \frac{\sqrt{\pi}-\sqrt{2t}}{\sqrt{1-\sin t}} \\
& = & \color{blue}{\frac{\sqrt{\pi}-\sqrt{2t}}{\cos t}}\cdot \underbrace{\sqrt{1+\sin t}}_{\stackrel{t \to \frac{\pi}{2}^-}{\longrightarrow}\color{green}{\sqrt{2}}} \\
\end{eqnarray*}
\begin{eqnarray*} \color{blue}{\frac{\sqrt{\pi}-\sqrt{2t}}{\cos t}}
& = & \color{orange}{\frac{\pi-2t}{\cos t}} \cdot \underbrace{\frac{1}{\sqrt{\pi} + \sqrt{2t}}}_{\stackrel{t \to \frac{\pi}{2}^-}{\longrightarrow}\color{green}{\frac{1}{2\sqrt{\pi}}}}\\
\end{eqnarray*}
\begin{eqnarray*} \color{orange}{\frac{\pi-2t}{\cos t}}
& \stackrel{t = u + \frac{\pi}{2}}{=} & \underbrace{\frac{-2u}{-\sin u}}_{\stackrel{u \to 0^-}{\longrightarrow}\color{green}{2}}\\
\end{eqnarray*}
All together:
$$\lim_{x\rightarrow 1^{-}}\frac{\sqrt{\pi}-\sqrt{2\sin^{-1}(x)}}{\sqrt{1-x}} = \color{green}{\sqrt{2}\cdot \frac{1}{2\sqrt{\pi}} \cdot 2} = \boxed{\frac{\sqrt{2}}{\sqrt{\pi}}}$$