0

Knowing

$$\sin^2\theta +\cos^2\theta \equiv 1$$

how would I prove: $$\sin^2x \cos^2y - \cos^2x \sin^2y \;\equiv\; \cos^2y - \cos^2x$$

Can I substitute the first equation to prove the second one? If so, how can I?

Please help.

Blue
  • 75,673

3 Answers3

1

Notice that the right hand side only has cosines in it. Try replacing all of the $\sin^2(x)$ and $\sin^2(y)$ with $1-\cos^2(x)$ and $1-\cos^2(y)$ respectively. If you simplify, you will see the right hand side.

0

Yes you can substitute the first equation into the second one.

$\sin^2\theta +\cos^2\theta \equiv 1 \implies \sin^2\theta = 1-\cos^2\theta$

Substitute to get,

$\begin{eqnarray} \sin^2x \cos^2y - \cos^2x \sin^2y &=& ((1-\cos^2(x)) (\cos^2y)) - ((\cos^2x) (1-\cos^2(y)) \\\\ &=& \cos^2y - ((\cos^2y)(\cos^2x)) - \cos^2x + ((\cos^2x)(\cos^2y)) \\\\ &=& \cos^2y - \cos^2x \end{eqnarray}$

E.Nole
  • 936
0

$\sin^2x \cos^2y - \cos^2x \sin^2y \\ = \sin^2x \cos^2y + (\cos^2x \cos^2y - \cos^2x \cos^2y) - \cos^2x \sin^2y \\ = (\sin^2x + \cos^2x) \cos^2y - \cos^2x (\cos^2y + \sin^2y) \\ = \cos^2y - \cos^2x$

gandalf61
  • 15,326