Knowing
$$\sin^2\theta +\cos^2\theta \equiv 1$$
how would I prove: $$\sin^2x \cos^2y - \cos^2x \sin^2y \;\equiv\; \cos^2y - \cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
Knowing
$$\sin^2\theta +\cos^2\theta \equiv 1$$
how would I prove: $$\sin^2x \cos^2y - \cos^2x \sin^2y \;\equiv\; \cos^2y - \cos^2x$$
Can I substitute the first equation to prove the second one? If so, how can I?
Please help.
Notice that the right hand side only has cosines in it. Try replacing all of the $\sin^2(x)$ and $\sin^2(y)$ with $1-\cos^2(x)$ and $1-\cos^2(y)$ respectively. If you simplify, you will see the right hand side.
Yes you can substitute the first equation into the second one.
$\sin^2\theta +\cos^2\theta \equiv 1 \implies \sin^2\theta = 1-\cos^2\theta$
Substitute to get,
$\begin{eqnarray} \sin^2x \cos^2y - \cos^2x \sin^2y &=& ((1-\cos^2(x)) (\cos^2y)) - ((\cos^2x) (1-\cos^2(y)) \\\\ &=& \cos^2y - ((\cos^2y)(\cos^2x)) - \cos^2x + ((\cos^2x)(\cos^2y)) \\\\ &=& \cos^2y - \cos^2x \end{eqnarray}$
$\sin^2x \cos^2y - \cos^2x \sin^2y \\ = \sin^2x \cos^2y + (\cos^2x \cos^2y - \cos^2x \cos^2y) - \cos^2x \sin^2y \\ = (\sin^2x + \cos^2x) \cos^2y - \cos^2x (\cos^2y + \sin^2y) \\ = \cos^2y - \cos^2x$