The general form of Stolz-Cesaro $\infty/\infty$ case states that any two real two sequences $a_n$ and $b_n$, with the latter being monotone and unbounded, satisfy
$$\liminf\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\le\liminf\frac{a_n}{b_n}\le\limsup \frac{a_n}{b_n}\le \limsup\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$Does the same hold for the $0/0$ case? That is, is it true that if $\lim a_n=\lim b_n=0$ and $b_n$ is strictly monotone, then $$\liminf\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\le\liminf\frac{a_n}{b_n}\le\limsup \frac{a_n}{b_n}\le \limsup\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$?
EDIT: Here's my attempt, please any feedback is appreciated.
I tried with the $\limsup$, assuming $0<b_{n+1}<b_n$ for all $n$. Suppose $\alpha>\limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$.
Then there exist infinitely many $N$ such that for all $k\ge0$, $$\alpha>\frac{a_{N+k}-a_{N+k-1}}{b_{N+k}-b_{N+k-1}}.$$ Since $b_{n+1}<b_n$, we have for $k\ge0$ that $\alpha(b_{N+k}-b_{n+K-1})<a_{N+k}-a_{N+k-1}$. Thus for any $m\ge0$, \begin{align} \alpha\sum_{k=0}^m(b_{N+k}-b_{N+k-1}) &< \sum_{k=0}^m(a_{N+k}-a_{N+k-1}) \\ \alpha(b_{N+m}-b_{N-1})&<a_{N+m}-a_{n-1}\end{align}and taking $m\to\infty$, \begin{align} -\alpha b_{N-1}&<-a_{N-1} \\ \alpha&>\frac{a_{N-1}}{b_{N-1}}.\end{align}Taking finally $N\to\infty$, we must have $\alpha\ge\limsup_{n\to\infty}\frac{a_n}{b_n}$. Thus we can conclude $$\limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\ge\limsup_{n\to\infty}\frac{a_n}{b_n}.$$