It is very more simple than you think, it is only a recursive propertie. When $x=1$
$$
\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=1}^{\infty}\frac{k}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=1}^{\infty}\frac{k}{(k-1)!\,k}
$$
$$
\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=1}^{\infty}\frac{1}{(k-1)!}
$$
$$
\sum_{k=0}^{\infty}\frac{k}{k!}=\sum_{k=0}^{\infty}\frac{1}{k!}=e
$$
When $x=2$:
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{(k-1)!\,k}
$$
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=\sum_{k=1}^{\infty}\frac{k}{(k-1)!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=\sum_{k=0}^{\infty}\frac{k+1}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=\sum_{k=0}^{\infty}\frac{k}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!}
$$
From $x=1$:
$$
\sum_{k=0}^{\infty}\frac{k^2}{k!}=e+e=2e
$$
When $x=3$
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=\sum_{k=1}^{\infty}\frac{k^3}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=\sum_{k=1}^{\infty}\frac{k^3}{(k-1)!\,k}
$$
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=\sum_{k=1}^{\infty}\frac{k^2}{(k-1)!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=\sum_{k=0}^{\infty}\frac{(k+1)^2}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=\sum_{k=0}^{\infty}\frac{k^2}{k!}+2\sum_{k=0}^{\infty}\frac{k}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!}
$$
From $x=2$ and $x=1$:
$$
\sum_{k=0}^{\infty}\frac{k^3}{k!}=2e+2e+e=5e
$$
When $x=4$:
$$
\sum_{k=0}^{\infty}\frac{k^4}{k!}=\sum_{k=1}^{\infty}\frac{k^4}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^4}{k!}=\sum_{k=1}^{\infty}\frac{k^3}{(k-1)!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^4}{k!}=\sum_{k=0}^{\infty}\frac{(k+1)^3}{k!}
$$
$$
\sum_{k=0}^{\infty}\frac{k^4}{k!}=\sum_{k=0}^{\infty}\frac{k^3}{k!}+3\sum_{k=0}^{\infty}\frac{k^2}{k!}+3\sum_{k=0}^{\infty}\frac{k}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!}
$$
From $x=1,2,3$:
$$
\sum_{k=0}^{\infty}\frac{k^4}{k!}=5e+6e+3e+e=15e
$$
And that's all.