How do I show that $$\lim_{n\to\infty} \sqrt[n]{a^n+b^n}=\operatorname{max}(a,b)$$ with $a,b\ge0$.
I tried to do this by dividing it in two cases, when $a=b$ and $a\gt b$.
In the case $a\gt b$ I factored $a^n$ like this: $$\lim_{n\to\infty} \sqrt[n]{a^n \left(1+{b^n\over a^n} \right)} = \lim_{n\to\infty} a\sqrt[n]{1+{b^n\over a^n}} = a\lim_{n\to\infty} \sqrt[n]{1+{b^n\over a^n}}$$
Then I expressed it in exponential way. $$a\lim_{n\to\infty} \left({1+{b^n\over a^n}}\right)^{1/n}$$
Now I need to prove that $\lim_{n\to\infty} \left({1+{b^n\over a^n}}\right)^{1/n}=1$ so the whole limit is equal to a. The problem is that I don't know how to take the limit of $\lim_{n\to\infty} \left({1+{b^n\over a^n}}\right)^{1/n}$ I tried to use the natural logarithm, but it ended up like this: $$\lim_{n\to\infty} \log\left({1+{b^n\over a^n}}\right)^{1/n}=\lim_{n\to\infty} {1\over n} \log\left({1+{b^n\over a^n}}\right)=\lim_{n\to\infty} {1\over n} \lim_{n\to\infty}\log\left({1+{b^n\over a^n}}\right)=0$$ What did I do wrong and how can I do it right?