Let $X$ ~ $\mathcal{N}(0,1)$. Show that: $\displaystyle \mathbb E[X^{2n}] = \prod_{1 \leq k \leq 2n, k \operatorname{odd}}k$
Idea:
$$\mathbb E[X^{2n}]=\frac{1}{\sqrt{2\pi}}\int_{\mathbb R}x^{2n}e^{-\frac{x^2}{2}}dx=\frac{2}{\sqrt{2\pi}}\int_{0}^{\infty}x^{2n}e^{-\frac{x^2}{2}}dx~,$$ then set $t=x^2 / 2 \Rightarrow dt=xdx$ and
$$\frac{2}{\sqrt{2\pi}}\int_{0}^{\infty}x^{2n}e^{-\frac{x^2}{2}}dx=\frac{2^{n+1}}{\sqrt{\pi}}\int_{0}^{\infty}t^{n-\frac{1}{2}}e^{-t}dt=\frac{2^{n+1}}{\sqrt{\pi}}\Gamma(n+\frac{1}{2})$$
I know that in order to get the desired result, I need to show that:
$$\frac{2}{\sqrt{2\pi}}\int_{0}^{\infty}x^{2n}e^{-\frac{x^2}{2}}dx=\frac{2}{\sqrt{\pi}}\Gamma(n+\frac{1}{2})$$
But I am far off it, where did I go wrong?