Since $$\sum_{k=0}^{\infty}x^k=\frac{1}{1-x},$$we have $$\sum_{j=0}^{\infty}e^{-wj}=\sum_{j=0}^{\infty} (e^{-w})^j=\frac{1}{1-e^{-w}}=\frac{e^w}{e^w-1}$$
Also, since $$e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!},$$we have $$\sum_{j=0}^{\infty}e^{-wj}=\frac{1+w+\frac{w^2}{2}\cdots}{w+\frac{w^2}{2}+\frac{w^3}{6}+\cdots}$$
How can I obtain $$\sum_{j=0}^{\infty}e^{-wj}=\frac{1}{w}+\frac{1}{2}+\frac{w}{12}-\frac{w^3}{720}+\frac{w^5}{30240}+\cdots?$$