First consider the following Lemma
Lemma :
$$ \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}} $$
Proof : Note that,
$ \displaystyle \prod_{k=1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right) = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=n+1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right)$
$ \displaystyle = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=1}^{n} \sin \left(\dfrac{(n+k)\pi}{2n+1}\right) $
$ \displaystyle = \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \cdot \prod_{k=1}^{n} \sin \left(\dfrac{k\pi}{2n+1}\right) \ \left(\because \prod_{k=1}^{n} f(k) = \prod_{k=1}^{n} f(n+1-k) \right) $
$ \displaystyle = \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right) $
But,
$ \displaystyle \prod_{k=1}^{2n} \sin \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}} $ (For my proof of this, see here )
$ \displaystyle \implies \prod_{k=1}^{n} \sin^2 \left(\dfrac{k\pi}{2n+1}\right) = \dfrac{2n+1}{2^{2n}} $
Now, let $ \displaystyle \text{P} = (2n+1)\sin(\theta) \prod_{k=1}^n \left(1 -\dfrac{\sin^2(\theta)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right) $
$ \displaystyle = (2n+1)\sin(\theta) \dfrac{ \displaystyle \prod_{k=1}^n \left( \sin^2\left(\frac{k\pi}{2n+1}\right) - \sin^2(\theta) \right)}{ \displaystyle \prod_{k=1}^{n} \sin^2\left(\frac{k\pi}{2n+1}\right) } $
$ \displaystyle = 2^{2n} \sin(\theta) \prod_{k=1}^n \left( \cos^2(\theta) - \cos^2\left(\frac{k\pi}{2n+1}\right) \right) $ (Using the Lemma)
$ \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) + \cos \left(\frac{k\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right) $
$ \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) - \cos \left(\frac{(2n+1 - k)\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right) \ \left(\because \cos (\pi -x) = -\cos x \right) $
$ \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=1}^n \left( \cos (\theta) - \cos \left(\frac{(n + k)\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) \right) \ \left(\because \prod_{k=1}^{n} f(k) = \prod_{k=1}^{n} f(n+1-k) \right) $
$ \displaystyle = 2^{2n} \sin(\theta) \left(\prod_{k=n+1}^{2n} \left( \cos (\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right)\right) \cdot \left( \prod_{k=1}^n \left( \cos(\theta) - \cos \left(\frac{ k \pi}{2n+1}\right) \right) \right) $
$ \displaystyle = 2^{2n} \sin(\theta) \prod_{k=1}^{2n} \left( \cos (\theta) - \cos \left(\frac{k\pi}{2n+1}\right) \right) $
Also,
$ \displaystyle U_{n} (x) = 2^{n} \prod_{k=1}^{n} \left(x - \cos \left(\frac{k\pi}{n+1}\right) \right) $
where $ \displaystyle U_{n} (x)$ denotes the Chebyshev Polynomial of the Second kind.
$ \displaystyle \implies \text{P} = 2^{2n} \sin(\theta) \cdot 2^{-2n} \cdot U_{2n} (\cos \theta) $
$ \displaystyle = \sin ((2n+1) \theta) \ \left(\because U_{n} (\cos \theta) = \dfrac{\sin ((n+1) \theta)}{\sin \theta} \right) \quad \square$