-1

I think the equation above is false, but I cannot find a counterexample.

Also, I think that the implication is true when $a_n^2 \to 1$ is also required.

Suppose we have $a_n\in\mathbb{C}\ \forall n\in\mathbb{N}$.

Can you help me?

Aericura
  • 251

2 Answers2

5

Hint: What happens if $a_n=1+\frac12+\frac13+\cdots+\frac1n$?

2

If $a_n=\log n,$ $\lim_{n\rightarrow \infty}(a_n-a_{n-1})=\lim_{n\rightarrow \infty}\log (1+\frac1{n-1})=0$. However, $a_n\rightarrow \infty (n\rightarrow\infty).$

Kenta S
  • 16,151
  • 15
  • 26
  • 53