Given that, for integers $p$ and $q$, $$\begin{align} A &= p^2-q^2+2pq \\[2pt] B &= p^2-q^2-2pq \\[2pt] C &= p^2-q^2 \end{align}$$
it can readily be shown that the two conic sections
$$\begin{align} Ax^2 + By^2 &= Cs^2 \\[2pt] Ay^2 + Bx^2 &= Ct^2 \end{align}$$
have a trivial parametric solution $$(x, y, s, t ) = ( p, q, p + q, p - q )$$
My question is
How does one generate nontrivial parametric solutions?
PWJVE