Initially assume ZFC.
Let $\binom{\kappa}{\lambda}$ denotes $\left|[\kappa]^{\lambda}\right|$ where $[\kappa]^{\lambda}$ is the collection of all subsets of $\kappa$ with cardinality $\lambda$. That is, the number of subsets of $\kappa$ of size $\lambda$.
Let $\kappa$ be any infinite cardinal number. Then it is easy to see that
- $\binom{\kappa}0=1$
- $\binom{\kappa}n=\kappa$ for all positive natural number $n$.
- $\binom{\aleph_0}{\aleph_0}=\beth_1$
- $\binom{\kappa}{\lambda}\le \kappa^\lambda$ when $1\le \lambda \le \kappa$
3 is due to $\beth_1=\sum_{\lambda=0}^{\aleph_0}\binom{\aleph_0}{\lambda}$ and others besides $\binom{\aleph_0}{\aleph_0}$ sums $\aleph_0$(since countable infinite countable infinites sums to countable infinite)
$\left({}^{\kappa}_{\lambda}\right)\le \kappa^\lambda$ is due to an injection can be made from $[\kappa]^{\lambda}$ into $\kappa^{\lambda}$(maps $\{a_i|i<\lambda\}$ to $\langle a_i\rangle_{i<\lambda}$ where $a_j<a_k$ iff $j<k$)
I hypothesize that
$$\binom{\kappa}{\lambda}=\begin{cases} \kappa^\lambda,&\lambda \le \kappa \\ 0,& \lambda>\kappa \end{cases}$$
It holds when $\kappa=\aleph_0$, but hard to induct for larger cardinals without assuming GCH. So I need some helps.