Let $\lambda=(\lambda_1,...,\lambda_r,...)$ be a partition (i.e. $\lambda_i\ge \lambda_{i+1}$ and there are only finitely many non-zero terms.) Let $\lambda'$ be a conjugate partition, i.e. $\lambda_i'=\mathrm{card}\{j:\ \lambda_j\ge i\}$.
Let $\Lambda:=\{(i,j)\in\mathbb{Z}^2 :\ 1\le j\le \lambda_i \}$ be the diagram of $\lambda$.
Take $x=(i,j)$ and define the hook-length by $$h(x)=\lambda_i+\lambda_j'-i-j+1.$$ From the properties of diagrams it is known that for $$f_{\lambda,n}(t):=\sum\limits_{i=1}^nt^{\lambda_i+n-i}$$ with $n\ge \lambda_1', \ m\ge\lambda_1$ the following identity holds $$f_{\lambda,n}(t)+t^{m+n-1}f_{\lambda',m}(t^{-1})=\frac{1-t^{n+m}}{1-t}.$$ From this it follows (after some calculations) that $$\prod\limits_{x\in\Lambda}(1-t^{h(x)})\prod\limits_{i<j}(1-t^{\mu_i-\mu_j})=\prod\limits_{i\ge 1}\prod\limits_{j=1}^{\mu_i}(1-t^j),$$ where $\mu_i=\lambda_1+n-i$.
I would like to show that the above relation implies $$\prod\limits_{x\in\Lambda}h(x)\prod\limits_{i<j}(\mu_i-\mu_j)=\prod\limits_{i\ge 1}\mu_i!.$$
I know that I should somehow divide the previous relation by $(1-t)^{|\lambda|}$, but I don't see how to use this hint in a way that is not so tedious.