Let $A$ be a Banach algebra we khow that
If $ab=ba$ then $e^{a+b}=e^{a}e^{b}$
my question is
Does $e^{a+b}=e^{a}e^{b}$ implies that $ab=ba$?
Any comment or response is appreciated.
Let $A$ be a Banach algebra we khow that
If $ab=ba$ then $e^{a+b}=e^{a}e^{b}$
my question is
Does $e^{a+b}=e^{a}e^{b}$ implies that $ab=ba$?
Any comment or response is appreciated.
There is a counterexample. Let the Banach algebra be the space of operators on a finite-dimensional Hilbert space. We can pick two orthonormal vectors, $|i\rangle$ and $|j\rangle$, and choose operators $\hat A$ and $\hat B$ as follows: $$\hat A = 2\pi i |i\rangle \langle i| \, , \quad \hat B = 2\pi i |i\rangle \langle i| + |i\rangle \langle j | \, .$$
Then we see that $$ \hat A^k = (2\pi i)^{k-1} \hat A \, , \quad \hat B^k = (2\pi i)^{k-1} \hat B \, , \quad (\hat A+\hat B)^k = (4\pi i)^{k-1} (\hat A+\hat B) \, . $$
Therefore $e^{\hat A} = e^{\hat B} = e^{\hat A + \hat B}$ = I, which means $ e^{\hat A + \hat B} = e^{\hat A}e^{\hat B}$. Yet $$ \hat A \hat B = (2\pi i)^2|i\rangle \langle i| + (2\pi i) |i\rangle \langle j| \not = (2\pi i)^2|i\rangle \langle i| = \hat B \hat A \, . $$