Given that complex numbers $z_1,z_2,z_3$ lie on unit circle and
$$|z_1-z_2|^2+|z_1-z_3|^2=4$$ Then find value of $|z_2+z_3|$
My try:
We can take $z_1=e^{i\alpha}$, $z_2=e^{i\beta}$ and $z_3=e^{i\gamma}$
So we have
$$|z_1-z_2|=2\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$|z_1-z_3|=2\sin\left(\frac{\alpha-\gamma}{2}\right)$$
So we get:
$$\sin^2\left(\frac{\alpha-\beta}{2}\right)+\sin^2\left(\frac{\alpha-\gamma}{2}\right)=1$$
Now we have:
$$|z_2+z_3|=2\cos\left(\frac{\beta-\gamma}{2}\right)$$
Any help here?
