2

It is well known that the Riemann zeta function, defined for all positive integers $n>1$ by $$ \zeta(n) = \sum_{m=1}^{\infty} m^{-n} $$ takes the value $\displaystyle \frac{\pi^2}{6}$ at $n=2$. On the other hand, a product by Wallis converges to $\displaystyle \frac{\pi}{2}$: $$ \prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}. $$

There exist many proofs of $\zeta(2)=\displaystyle \frac{\pi^2}{6}$, but I have found none that involves the Wallis product.

  1. Can $\zeta(2)$ be derived from the Wallis product?
  2. If so, can the general formula for $\zeta(2n)$ by derived in a similar manner?
Klangen
  • 5,075
  • Do you know this paper ? https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=2ahUKEwja-tHW9fngAhUJDmMBHVuBDcQQFjAGegQIBxAC&url=http%3A%2F%2Fmath.cmu.edu%2F~bwsulliv%2FMathGradTalkZeta2.pdf&usg=AOvVaw1zVtut4BpZNo_d6wyh3PcX – Claude Leibovici Mar 11 '19 at 10:55
  • @ClaudeLeibovici I have given that a superficial reading, yes, but I haven't found such a theorem in the list it proposes. – Klangen Mar 11 '19 at 11:57
  • p.2. And it is the first method mentioned in https://en.wikipedia.org/wiki/Basel_problem now it should be clear there is no obvious way to show the infinite for $\sin(x)$ and doing so by heuristic means lead to the development of Fourier analysis and complex analysis – reuns Mar 20 '19 at 22:33
  • 1
    The direct connection between the zeta function and the Wallis product is indeed Euler's product formula of the sine function. If you include the Gamma function, it’s better to see. And please observe that $~\displaystyle -\ln\frac{\sin(\pi x)}{\pi x} = \sum\limits_{n=1}^\infty\frac{x^{2n}}{n}\zeta(2n)~$ . – user90369 Mar 21 '19 at 11:03
  • @user90369 Can you please provide a more detailed proof? And then I can award you the bounty. – Klangen Mar 21 '19 at 18:08

1 Answers1

1

There are several proofs for the sine product, e.g. look for “sine product formula proof”.

You can also take a look here, there is a link to the old proof of Euler.

For a proof of the Wallis product it’s enough to look e.g. here.

It’s $~\displaystyle \frac{\pi}{2} = \frac{\pi x}{\sin(\pi x)}|_{x=\frac{1}{2}} = \Gamma(1-x)\Gamma(1+x)|_{x=\frac{1}{2}} = \prod\limits_{n=1}^\infty \frac{2n}{2n-1}\frac{2n}{2n+1}~$ .

The connection to the Riemann zeta function can be seen by using the logarithm.

$\displaystyle \ln\frac{\pi x}{\sin(\pi x)} = \ln(\Gamma(1-x)\Gamma(1+x)) = \sum\limits_{n=1}^\infty\frac{x^{2n}}{n}\zeta(2n)$

The last equation comes from $~\displaystyle \ln\prod\limits_{k=1}^n (1-zb_k)^{a_k} = \sum\limits_{k=1}^\infty\frac{z^k}{k}\sum\limits_{v=1}^n a_v b_v^k$

with $~\displaystyle (a_v;b_v;n;z):=\left(1;\frac{1}{v^2};\infty;x^2\right)~$ .

To get the formula for $~\zeta(2n)~$ one should use the Bernoulli numbers $\,B_k\,$,

traditionelly introduced by $\displaystyle \frac{x}{e^x-1} = \sum\limits_{k=0}^\infty \frac{x^k}{k!}B_k$ .

With the first derivation of $~\displaystyle \ln\frac{\pi x}{\sin(\pi x)}~$ follows:

$\displaystyle \frac{1 -\pi x\cot(\pi x)}{x} =\frac{d}{dx}\ln\frac{\pi x}{\sin(\pi x)} = \frac{d}{dx}\sum\limits_{n=1}^\infty\frac{x^{2n}}{n}\zeta(2n) = 2\sum\limits_{n=1}^\infty x^{2n-1}\zeta(2n)$

with $\enspace\displaystyle \cot(z) = \frac{\cos z}{\sin z} = i\frac{ e^{iz}+e^{-iz} }{ e^{iz}-e^{-iz} } = i\frac{ e^{iz}-e^{-iz}+2e^{-iz} }{ e^{iz}-e^{-iz} } = i\left(1+\frac{1}{iz}\frac{i2z}{e^{i2z}-1}\right)$

$\hspace{2.3cm}\displaystyle = i\left(1+\frac{1}{iz}\sum\limits_{k=0}^\infty \frac{(i2z)^k}{k!}B_k\right) = \frac{1}{z}+\frac{1}{z}\sum\limits_{k=1}^\infty (-1)^k\frac{(2z)^{2k}}{(2k)!}B_{2k}$

We get $\displaystyle \enspace\frac{1 -\pi x\cot(\pi x)}{x} = \sum\limits_{k=1}^\infty (-1)^{k-1}\frac{(2\pi)^{2k}x^{2k-1}}{(2k)!}B_{2k}$

and comparing the coefficients of $~x^{2k-1}~$ it follows $~\displaystyle \zeta(2n)=(-1)^{k-1}\frac{(2\pi)^{2k}}{2(2k)!}B_{2k}~$ .

user90369
  • 11,518