Let $n_1, m_1, n_2, m_2 \in \mathbb{N}_{\geq 2}$ such that $\gcd(n_1, m_1) = \gcd(n_2, m_2) = 1$ and $$ \log_{n_1}(m_1) = \log_{n_2}(m_2). $$ Does it follow that $n_1 = n_2$ and $m_1 = m_2$?
Equivalent formulation
This is the original motivation. Let $n_1, m_1, n_2, m_2 \in \mathbb{N}_{\geq 2}$ such that $\gcd(n_1, m_1) = \gcd(n_2, m_2) = 1$. Can we always find $a, b \in \mathbb{Z}$ such that $$ n_1^a m_1^b > 1 \\ n_2^a m_2^b < 1 ? $$