Let $H(x)$ be the Heaviside function defined by
\begin{cases} 1 & \text{if } x\geq0\\ 0 & \text{if } x<0 \end{cases}
I know that
- $H'(x)=\delta(x)$. The derivative of the Heaviside function is the delta function.
- $\delta(x)=\delta(-x)$. The delta function is symetric.
Does
- $H(x)=H(-x)$?
- $H(x)=-H(x)$?
It appears that
$$ -\delta(x)\delta(-y)=\delta(x)\delta(y)$$
and
$$ -\delta(-x)\delta(y)=\delta(x)\delta(y)$$
Do both of these properties follow from the definition of the Heaviside function?