I'm looking for a proof of this:
$$\int_0^\infty f(x)g(x)\,dx = \int_0^\infty \mathcal{L}\{f(x)\}\mathcal{L}^{-1}\{g(x)\}\,ds$$
Where $\mathcal{L}^{-1}\{g(x)\}$ denotes the inverse Laplace tranform of $g(x)$.
This can be used to evaluate integrals such as:
$$\int_0^\infty \frac{\sin x}{x}dx$$
with $f(x)= \sin x$ and $g(x)=\frac{1}{x}$ we get that:
$$\int_0^\infty \frac{\sin x}{x}=\int_0^\infty \mathcal{L}\{\sin x\}\mathcal{L}^{-1}\{\frac{1}{x}\}\,ds=\int_0^\infty \frac{1}{s^2+1}ds=\frac{\pi}{2}$$
My first approach would have been to write $\mathcal{L}\{f(x)\}$ and $\mathcal{L}^{-1}\{g(x)\}$ as their integral representations, but is there one for $\mathcal{L}^{-1}\{g(x)\}$?
