$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{k = 1}^{n + 1}{n{n \choose k - 1} \over
{2n \choose k}} & =
n\sum_{k = 0}^{n}{{n \choose k} \over {2n \choose k + 1}}
\\[5mm] & =
n\sum_{k = 0}^{n}{n \choose k}
{1 \over
\pars{2n}!/\bracks{\pars{k + 1}!\pars{2n - k - 1}!}}
\\[5mm] & =
n\pars{2n + 1}\sum_{k = 0}^{n}
{n \choose k}{\Gamma\pars{k + 2}\Gamma\pars{2n - k}! \over \Gamma\pars{2n + 2}}
\\[5mm] & =
n\pars{2n + 1}\sum_{k = 0}^{n}
{n \choose k}\int_{0}^{1}
t^{k + 1}\pars{1 - t}^{2n - k - 1}\,\dd t
\\[5mm] & =
n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}^{2n}\,
{t \over 1 - t}\sum_{k = 0}^{n}{n \choose k}
\pars{t \over 1 - t}^{k}\,\dd t
\\[5mm] & =
n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}^{2n - 1}\, t
\pars{1 + {t \over 1 - t}}^{n}\,\dd t
\\[5mm] & =
n\pars{2n + 1}\int_{0}^{1}t\, \pars{1 - t}^{n - 1}\,\dd t \\[5mm] & =
n\pars{2n + 1}\int_{0}^{1}\pars{1 - t}\,t^{n - 1}\,\dd t
\\[5mm] & =
n\pars{2n + 1}\pars{{1 \over n} - {1 \over n +1}}
= \bbx{2n + 1 \over n + 1} \\ &
\end{align}