If $x+y+z=\pi$ how to prove that $\sin x+\sin y+\sin z=4\cos\frac{x}{2}\cos\frac{y}{2}\cos\frac{z}{2}$?
I got that $\sin x+\sin y+\sin z=2\sin\frac{x+y}{2}\cos\frac{x-y}{2}+\sin x\cos y+\sin y\cos x$ and I don't know what to do next.
Can somebody help me, please?