Using your definition $$e^x:=\lim_{n\to \infty }\left(1+\frac{x}{n}\right)^n$$
here a proof (it's really not complicated, but I agree it's long). So feel free to ask if something is not clear.
Using Binomial theorem, we have $$\left(1+\frac{x}{n}\right)^n=\sum_{k=0}^n\binom{n}{k}\frac{x^k}{n^k}=\sum_{k=0}^n\frac{x^k}{k!}\prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right).$$
The last equality come from the fact that
\begin{align*}
\frac{n!}{(n-k)!}&=n(n-1)(n-2)\cdot (n-k+1)\\
&=n^k\left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right)...\left(1-\frac{k-1}{n}\right)\\
&=n^k\prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right).
\end{align*}
Set $$S_n=\sum_{k=0}^n\frac{x^k}{k!}\prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right).$$
Set $$T_n=\sum_{k=0}^n \frac{x^k}{k!}.$$
Fix $n\in\mathbb N^*$. Then, for all $k\leq n$, then $$\prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right)\leq 1.$$
Therefore $S_n\leq T_n$ for all $n$, and thus $$\sum_{k=0}^\infty \frac{x^k}{k!}=\lim_{n\to \infty }T_n\geq \lim_{n\to \infty }S_n=e^x.$$
For the converse inequality, let $m\leq n$. Then,
$$\sum_{k=0}^m \frac{x^k}{k!}\prod_{i=0}^{k-1}\left(1-\frac{k}{n}\right)\leq \sum_{k=0}^n\frac{x^k}{k!}\prod_{i=0}^{k-1} \left(1-\frac{k}{n}\right)=S_n.$$
Therefore, $$T_m=\lim_{n\to \infty }\sum_{k=0}^m \frac{x^k}{k!}\prod_{i=0}^{k-1}\left(1-\frac{k}{n}\right)\leq \lim_{n\to \infty }S_n=e^x.$$
Finally, we get $$\sum_{k=0}^\infty \frac{x^k}{k!}=\lim_{m\to \infty }T_m\leq e^x,$$
and thus $$\sum_{k=0}^\infty \frac{x^k}{k!}=e^x.$$