4

What's the remainder when $x^{7} + x^{27} + x^{47} +x^{67} + x^{87}$ is divided by $x ^ 3 - x$ in terms of $x$?I tried factoring $x$ from both polynomials but I don't know what to do next since there'd be a $1$ in the second polynomial. Any help would be appreciated!

6 Answers6

10

Modulo $x^3-x$ we have $x^3=x$ so $x^{2n+1}=x$ for any integer $n\ge 0$ (a trivial induction exercise). Hence your sum leaves remainder $5x$.

J.G.
  • 115,835
  • 2
    @OP Note that the above claim requires rigorous proof (e.g. by induction). More generally $,xf(x^2) \bmod x^3!-!x,=, xf(1),$ by modular arithmetic - as in my answer (there the induction is hidden in the application of the Polynomial Congruence Rule). $\ \ \ $ – Bill Dubuque May 03 '19 at 17:35
6

Let your $87$-th degree polynomial be $P(x)$. You're to find $Q(x)=ax^2+bx+c$ where $$ P(x)=(x^3-x)D(x)+Q(x). $$ Then: $$ 5=P(1)=0\cdot D(1)+Q(1)\implies Q(1)=5;\\ 0=P(0)=0\cdot D(0)+Q(0)\implies Q(0)=0;\\ -5=P(-1)=0\cdot D(-1)+Q(-1)\implies Q(-1)=-5. $$ From $Q(0)=0$, it is easy to see $c=0$. Using this and the other 2 conditions, we have: $$ a+b=5,\quad a-b=-5\implies a=0,\quad b=5. $$ In sum $Q(x)=5x$.

yurnero
  • 10,505
3

$xf(x^2)\,\bmod\, x(x^2\!-\!1)\, =\, x\,(\overbrace{f(\color{#c00}{x^2})\,\bmod\, x^2\!-\!1}^{\color{#c00}{\Large x^2\ \equiv\,\ 1}})\, =\, xf(\color{#c00}{ 1})\, =\, 5x$

Bill Dubuque
  • 272,048
1

$$ P(x)=x^{7} + x^{27} + x^{47} +x^{67} + x^{87}=x(x-1)(x+1)q(x) + r(x)$$

Note that we have $r(1)= P(1)$, $r(0)= P(0)$ and $r(-1)=P(-1)$.

We can find $$r(x)=x^2+ax+b =5x $$ using the above information.

0

Doing long division: $$P(x)=\frac{x^{7} + x^{27} + x^{47} +x^{67} + x^{87}}{x^3-x}=\frac{x^{86}+x^{66}+x^{46}+x^{26}+x^6}{x^2-1}=\\ \frac{\sum_{i=0}^{9}(x^{86-2i}-x^{84-2i})+2\sum_{i=0}^{9}(x^{66-2i}-x^{64-2i})+3\sum_{i=0}^{9}(x^{46-2i}-x^{44-2i})+4\sum_{i=0}^{9}(x^{26-2i}-x^{24-2i})+5\sum_{i=0}^{2}(x^{6-2i}-x^{4-2i})+5}{x^2-1}=\\ Q(x)+\frac{5}{x^2-1}=Q(x)+\frac{5x}{x^3-x}.$$

farruhota
  • 31,482
0

$x^{2n}\equiv1 \pmod{x^2-1}$ so $(x^2-1) | (x^{2n}-1)$ so $(x^3-x) | (x^{2n+1}-x)$

so $x^{2n+1}\equiv x \pmod {x^3-x}$

so $x^7+x^{27}+x^{47}+x^{67}+x^{87}\equiv 5x \pmod {x^3-x}$

J. W. Tanner
  • 60,406
  • @OP Above is essentially the modular proof in my answer with the modular language (congruences) eliminated, i.e. expressed in the more primitive language of divisibility. When learning modular arithmetic you may find it instructive to go back-and-forth between both languages to better understand their relationship. – Bill Dubuque May 05 '19 at 14:24
  • i.e. the first 2 lines show $,\large xf(x^2) \equiv xf(1), \pmod{!x^3!-!x}\ $ for special case $\large ,f = x^n\ \ \ $ – Bill Dubuque May 05 '19 at 14:38