I know that $$\cos(\dfrac{\pi}{3} - \arctan(x))= \dfrac{1}{2\sqrt{(1+x^2)}} + \dfrac{\sqrt{3}x}{2\sqrt{(1+x^2)}}$$
$\cos\left(\dfrac{\pi}{3} - \dfrac{\arctan(x)}{3}\right)$ = ?
$\cos\left(\dfrac{\pi}{3} - \dfrac{\arctan(x)}{3}\right) = \cos\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\arctan(x)}{3}\right) + \sin\left(\dfrac{\pi}{3}\right)\sin\left(\dfrac{\arctan(x)}{3}\right) = \dfrac{1}{2}\cos\left(\dfrac{\arctan(x)}{3}\right) + \dfrac{\sqrt{3}}{2}\sin\left(\dfrac{\arctan(x)}{3}\right)$
but I can't go further since I don't know how to solve $\sin\left(\dfrac{\arctan(x)}{3}\right)$ and $\cos\left(\dfrac{\arctan(x)}{3}\right)$.
Any suggestion?
It gets worst anytime lol
– JackLametta May 06 '19 at 07:48