Prove by induction: $b^n-a^n=(b-a)\cdot \sum_{k=0}^{n-1}{a^k\cdot b^{n-1-k}}$ $\forall n\in \mathbb{N}$ and $a,b\in \mathbb{R}$
$\exists n\in \mathbb{N}:b^n-a^n=(b-a)\cdot \sum_{k=0}^{n-1}{a^k\cdot b^{n-1-k}}$
$\Rightarrow b^{n+1}-a^{n+1}=(b-a)\cdot \sum_{k=0}^{n}{a^k\cdot b^{n-k}}$
Base case: $n_0=1: b^1-a^2=(b-a)\cdot \underbrace{\sum_{k=0}^{1-1}{a^k\cdot b^{1-1-k}}}_{=1} \quad \checkmark$
Inductive step:
$b^{n+1}-a^{n+1}=(b-a)\cdot \sum_{k=0}^{n}{a^k\cdot b^{n-k}}$
The sigma sign is what stresses me out, how can I deal with it?