Inasmuch as the function $F(s)=\frac{\pi\cosh(\sqrt s)}{2s^{3/2}\sinh(\sqrt s)}$ is an even function of $\sqrt s$, there is no branch point at $s=0$. Rather, there is a second order pole at $s=0$.
Hence, we have for $t>0$
$$\begin{align}
\mathscr{L}^{-1}\{F\}(t)&=\frac1{2\pi i}\int_{c-i\infty}^{c+i\infty}F(s)e^{st}\,ds\\\\
&=\text{Res}\left(F(s)e^{st}, s=0\right)+\sum_{n=1}^\infty\text{Res}\left(F(s)e^{st}, s=-n^2\pi^2\right)
\end{align}$$
For the residue at $s=0$ we have for $t>0$
$$\text{Res}\left(F(s)e^{st}, s=0\right)=\frac\pi2\,\lim_{s\to 0}\frac{d}{ds}\left(\sqrt s\coth(\sqrt s)e^{st}\right)=\frac\pi6+\frac\pi2 t$$
For the residues at $-n^2\pi^2$, $n\ne0$, we have for $t>0$
$$\text{Res}\left(F(s)e^{st}, s=-n^2\pi^2\right)=\lim_{s\to -n^2\pi^2}(s+n^2\pi^2)\frac{\pi \cosh(\sqrt s)}{2s^{3/2}\sinh(\sqrt s)}\,e^{st}=-\frac{e^{-n^2\pi^2t}}{n^2\pi}$$
Hence, we find that
$$\mathscr{L}^{-1}\{F\}(t)=\frac\pi6+\frac{\pi}{2}t-\sum_{n=1}^\infty \frac{e^{-n^2\pi^2t}}{n^2\pi}$$