How can we prove $\operatorname{cosec}(2A) + \operatorname{cosec}(4A) + \operatorname{cosec}(8A) = \cot(A) - \cot(8A)$?
-
1Hi, welcome to MathSE! What have you tried so far? – May 19 '19 at 12:37
-
2Can you prove $\csc 2A=\cot A-\cot2A$? – Angina Seng May 19 '19 at 12:44
-
See also : https://math.stackexchange.com/questions/1591220/frac1-sin-8-circ-frac1-sin-16-circ-frac1-sin-4096-circ – lab bhattacharjee May 19 '19 at 13:20
1 Answers
Put the right side to the left. $$cosec(2A)+cosec(4A)+cosec(8A)-cot(A)+cot(8A)=0$$ Then express the left side by sines and cosines. You get: $$\frac{1}{sin(2A)}+\frac{1}{sin(4A)}+\frac{1}{sin(8A)}-\frac{cos(A)}{sin(A)}+\frac{cos(8A)}{sin(8A)} =$$ $$= \frac{1}{sin(2A)}+\frac{1}{sin(4A)}+\frac{1+cos(8A)}{sin(8A)}-\frac{cos(A)}{sin(A)} =$$ $$= \frac{1}{sin(2A)}+\frac{1}{sin(4A)}+\frac{2cos^2(4A)}{2sin(4A)cos(4A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{1}{sin(2A)}+\frac{1}{sin(4A)}+\frac{cos(4A)}{sin(4A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{1}{sin(2A)}+\frac{1+cos(4A)}{sin(4A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{1}{sin(2A)}+\frac{2cos^2(2A)}{2sin(2A)cos(2A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{1}{sin(2A)}+\frac{cos(2A)}{sin(2A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{1+cos(2A)}{sin(2A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{2cos^2(A)}{2sin(A)cos(A)}-\frac{cos(A)}{sin(A)} = $$ $$= \frac{cos(A)}{sin(A)}-\frac{cos(A)}{sin(A)} = 0$$
Q.E.D.
- 2,264
-
I think a hint would have been better, since the OP did not show any context in their question. – Toby Mak May 19 '19 at 12:55