I came up with this proof about Product theorem of limits after I watched "MIT Calculus Revisited" and I hope it's OK:
primal work on proof
Given $\hspace{0.5in}$ $$\mathop {\lim }\limits_{x \to a} f\left( x \right) = K \hspace{0.1in} and \hspace{0.1in} \mathop {\lim }\limits_{x \to a} g\left( x \right) = L$$
we hope to prove the existence of $$\mathop {\lim }\limits_{x \to a} [f\left( x \right) \cdot g\left( x \right)]= L \cdot K$$ means by Epsilon Delta definition :
$\hspace{1.4in}$every number $\varepsilon > 0$ there is some number $\delta > 0$ such that $$\left| {(f\left( x \right) \cdot g\left( x \right))-(L \cdot K) } \right| < \varepsilon \hspace{0.5in}{\mbox{whenever}}\hspace{0.5in}0 < \left| {x - a} \right| < \delta$$
$\hspace{.91in} \vert{(f\left( x \right) \cdot g\left( x \right))\vert-\vert(L \cdot K)\vert } < \varepsilon\hspace{.2in} \text{By Triangular inequality (1)} $
$\hspace{.91in} \vert{f\left( x \right)\vert \cdot \vert g\left( x \right)\vert- {\vert L \vert \cdot \vert K \vert}} < \varepsilon \hspace{0.2in} \text{by absoluate value product (2) }$
$\hspace{.91in} \vert{K + (f\left( x \right)-K) \vert \cdot \vert L + (g\left( x \right)-L)\vert- {\vert L \vert \cdot \vert K \vert}} < \varepsilon \hspace{0.2in}\text{Adding zeros)(3) }$
$\hspace{.91in} { \vert L \vert \cdot \vert(f\left( x \right)-K) \vert +\vert K \vert \cdot \vert(g\left( x \right)-L)\vert{}+\vert f\left( x \right)-K \cdot g\left( x \right)-L\vert } < \varepsilon \hspace{.08in}\text{simplify(4)}$
$\hspace{.9in}$put $\vert L \vert \cdot \vert f\left( x \right)-K\vert < \varepsilon/3$
$\hspace{.9in}$put $\vert K \vert \cdot \vert g\left( x \right)-L\vert < \varepsilon/3$
$\hspace{.9in}$put $\vert f\left( x \right)-K\vert < \sqrt{\varepsilon/3}$
$\hspace{.9in}$put $\vert g\left( x \right)-L\vert < \sqrt{\varepsilon/3}$
Actual proof
let $\varepsilon > 0 \hspace{0.1in}$ chooes $\varepsilon_1 = \varepsilon/3$ $\hspace{0.1in}$ and $\hspace{0.1in}$ $\varepsilon_2 = \varepsilon/3 \hspace{0.1in}$ then there exist
$\delta_1 > 0 \hspace{0.1in} $ such that $ \hspace{0.1in} \left \vert L \vert \cdot \vert {f\left( x \right) -K } \right| < \varepsilon_1 = \varepsilon/3 \hspace{0.2in}{\mbox{whenever}}\hspace{0.2in}0 < \left| {x - a} \right| < \delta_1 $
$\delta_2 > 0 \hspace{0.1in} $ such that $ \hspace{0.1in} \left \vert K \vert \cdot \vert {g\left( x \right) -L } \right| < \varepsilon_2 = \varepsilon/3 \hspace{0.2in}{\mbox{whenever}}\hspace{0.2in}0 < \left| {x - a} \right| < \delta_2 $
also choose $\varepsilon_3 = \sqrt{\varepsilon/3}$ $\hspace{0.1in}$ and $\hspace{0.1in}$ $\varepsilon_4 =\sqrt{\varepsilon/3} \hspace{0.1in}$ then there exist
$\delta_3 > 0 \hspace{0.1in} $ such that $ \hspace{0.1in} \left \vert {f\left( x \right) -K } \right| < \varepsilon_3 = \sqrt{\varepsilon/3} \hspace{0.2in}{\mbox{whenever}}\hspace{0.2in}0 < \left| {x - a} \right| < \delta_3 $
$\delta_4 > 0 \hspace{0.1in} $ such that $ \hspace{0.1in} \left \vert {g\left( x \right) -L } \right| < \varepsilon_4 = \sqrt{\varepsilon/3} \hspace{0.2in}{\mbox{whenever}}\hspace{0.2in}0 < \left| {x - a} \right| < \delta_4 $
choose the $\delta=\min(\delta_1,\delta_2,\delta_3,\delta_4)$ then :
$$ \begin{pmatrix} \hspace{0.1in} \left \vert L \vert \cdot \vert {f\left( x \right) -K } \right| < \varepsilon_1 = \varepsilon/3\\ \hspace{0.1in} \left \vert K \vert \cdot \vert {g\left( x \right) -L } \right| < \varepsilon_2 = \varepsilon/3\\ \hspace{0.1in} \left \vert {f\left( x \right) -K } \right| < \varepsilon_3 = \sqrt{\varepsilon/3}\\ \hspace{0.1in} \left \vert {g\left( x \right) -L } \right| < \varepsilon_4 = \sqrt{\varepsilon/3}\\ \end{pmatrix} $$ Will all hold for $\delta$
Adding the first two inequalities and Multiplying the last two inequalities we will get
$\hspace{.91in} { \vert L \vert \cdot \vert(f\left( x \right)-K) \vert +\vert K \vert \cdot \vert(g\left( x \right)-L)\vert{}+\vert f\left( x \right)-K \cdot g\left( x \right)-L\vert } < \varepsilon$ ${\mbox{whenever}}\hspace{2in}0 < \left| {x - a} \right| < \delta$
and that is what we looking for.