The question:
Prove $$\int_{-\infty}^\infty {dx\over (1+x^2)^{n+1}}={1\cdot3\cdot...\cdot(2n-1)\over 2\cdot4\cdot...\cdot2n}\pi$$
My attempt:
I've got to a different solution:
$$\begin{align}I:&=\int_{-\infty}^\infty {dx\over (1+x^2)^{n+1}}=2\pi i\cdot \operatorname{Res}({1\over{(1+z^2)^{n+1}}},i)\\&={2\pi i \over n!} \cdot((z+i)^{-n-1})^{(n)}=...\\&={2\pi i \over n!}(-n-1)(-n-2)...(-2n)\cdot 2i\\&={(-1)^{n}4\pi\over (n!)^2}\cdot (2n)! \end{align} $$
In a 'contradiction' to what I need to show.