0

I had to resort to the following characterization of number $e$ in order to Proof $\sum\limits_{n \le k/2} \frac 1 n < \log k$ to show Pólya's inequality:

$\forall x > 0. \left(1+\frac 1 x\right)^{x} < e < \left(1+\frac 1 {x}\right)^{x+1}$

Unfortunately, I don't have this result yet in my theorem prover. What is an easy way to derive it?

user1868607
  • 5,791

1 Answers1

0

Note that $\left(1+\frac 1 x\right)^{x}=e^{x\log (1+1/x)}<e^{x\frac 1 x}=e$

$\left(1+\frac 1 x\right)^{x+1}=e^{(x+1)\log (1+1/x)}> e$

Edit

If $F(x)=(x+1)\log (1+1/x)$

  • $\lim_{x\to 0^+}F(x)=\infty$

  • $\lim_{x\to \infty}F(x)=\lim_{x\to \infty}\frac{\log (1+1/x)}{1/(x+1)}=1$, by L-hospital.

  • $F'(x)=\log (1+1/x)-1/x$, How $\log (1+1/x)<1/x\implies F'(x)<0$ then $F(x)$ is decreasing in $(0,\infty)$

Therefore $F(x)=(x+1)\log (1+1/x)>1$