$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\int_{0}^{1}x^{n - 1}\expo{\ic\pi x/2}\dd x} =
\int_{0}^{1}\pars{1 - x}^{n - 1}\expo{\ic\pi\pars{1 - x}/2}\dd x
\\[5mm] = &\
\ic\int_{0}^{1}
\exp\pars{\vphantom{\Large A}\bracks{n - 1}\ln\pars{1 - x}}
\expo{-\ic\pi x/2}\dd x
\\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,&
\ic\int_{0}^{\infty}
\exp\pars{-\bracks{n - 1}x}\pars{1 - {\ic\pi \over 2}\,x -
{\pi^{2} \over 8}\,x^{2}}\dd x
\\[5mm] \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,&
{\pi/2 \over \pars{n - 1}^{2}} + {\ic \over n - 1}
\\[5mm] \implies &
\bbx{\left\{\begin{array}{rcrcl}
\ds{\mrm{g}\pars{n}} & \ds{\equiv} & \ds{\int_{0}^{1}x^{n - 1}\cos\pars{\pi x \over 2}\dd x}
& \ds{\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}} &
\ds{\pi/2 \over \pars{n - 1}^{2}}
\\[2mm]
\ds{\mrm{f}\pars{n}} & \ds{\equiv} & \ds{\int_{0}^{1}x^{n - 1}\sin\pars{\pi x \over 2}\dd x}
& \ds{\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}} &
\ds{1 \over n - 1}
\end{array}\right.}
\\[8mm] \implies &
\lim_{n \to \infty}{\pars{3n + 1}\,\mrm{f}\pars{n} \over
\pars{2n + 1}^{2}\,\mrm{g}\pars{n}} =
\lim_{n \to \infty}{\pars{3n + 1}\bracks{1/\pars{n - 1}} \over
\pars{2n + 1}^{2}\bracks{\pars{\pi/2}/\pars{n - 1}^{2}}}
\\[5mm] = &\
\bbx{3 \over 2\pi}
\end{align}