How to find
$$L=\lim_{n \to \infty}\prod_{i=0}^{n}\frac {qn+ip+1}{qn+ip}\,,$$
where $p\in\Bbb N ,p \neq \{0,1\},q>0$?
Also, I'm bound to using elemental methods.
How to find
$$L=\lim_{n \to \infty}\prod_{i=0}^{n}\frac {qn+ip+1}{qn+ip}\,,$$
where $p\in\Bbb N ,p \neq \{0,1\},q>0$?
Also, I'm bound to using elemental methods.
Hint: Take the $\ln$ on both sides:
$$\ln L=\lim_{n\to\infty}\sum_{i=0}^n\ln\left(\frac{qn+ip+1}{qn+ip}\right)$$
$$\implies L=\exp\left(\lim_{n\to\infty}\sum_{i=0}^n\ln\left(1+\frac{1}{qn+ip}\right)\right)$$
Now, you have reduced the problem to an infinite series.