This post, after a complicated analysis, evaluates the integral $$I=\int_0^1\frac{\ln^2(x)\,\ln^3(1+x)}xdx$$
simply as
$$I =-\frac{\pi^6}{252}-18\zeta(\bar{5},1)+3\zeta^2(3)\tag1$$
where,
$$\zeta(\bar{5},1)=\frac{1}{24}\int^1_0\frac{\ln^4{x}\ln(1+x)}{1+x}{\rm d}x$$
More succinctly,
$$I = -12\,S_{3,3}(-1)\tag2$$
with Nielsen generalized polylogarithm $S_{n,p}(z)$.
Question: How do we show that $\zeta(\bar{5},1)$ is also a Nielsen generalized polylogarithm in disguise? More generally, for $-1\leq z\leq1$, how to show
$$\begin{aligned}S_{n,p}(z) &= C_1\int_0^1\frac{(\ln x)^{n-1}\big(\ln(1-z\,x)\big)^p}{x}dx\\ &\overset{?}= C_2\int_0^1\frac{(\ln x)^{n}\;\big(\ln(1-z\,x)\big)^{p-1}}{1-z\,x}dx\end{aligned}\tag3$$
where, $$C_1 = \frac{(-1)^{n+p-1}}{(n-1)!\,p!},\qquad C_2 = \frac{(-1)^{n+p-1}}{n!\,(p-1)!}\color{red}z$$
If true, this implies,
$$\zeta(\bar{5},1) \overset{\color{red}?}= S_{4,2}(-1)\tag4$$
Edit: It turns out the notation $\zeta(\bar{5},1)$ is a multiple zeta function so,
$$\zeta(\bar{a},1)=\sum_{n=1}^{\infty}\frac{H_n}{(n+1)^a}\,(-1)^{n+1} = S_{a-1,2}(-1)$$
with harmonic numbers $H_n$, hence $(4)$ indeed is true and is just the case $a=5$. However, $(3)$ still needs to be proved in general.