Prove that $\alpha+\beta=\frac{\pi}{2}$, if $\sin{\alpha}=\frac{8}{17}$ and $\sin{\beta}=\frac{15}{17}$, where $0<\alpha<\frac{\pi}{2}$ and $0<\beta<\frac{\pi}{2}$.
This is what I did but I don't like it and thought there might be a "nicer" way of doing it.
Since $\sin{\alpha}=\cos{(\frac{\pi}{2}-\alpha)}$, then $\cos{(\frac{\pi}{2}-\alpha)}=\frac{8}{17}$ and since $\sin{\beta}=\cos{(\frac{\pi}{2}-\beta)}$, then $\cos{(\frac{\pi}{2}-\alpha)}=\frac{15}{17}$.
Solving for $\alpha$ gives us (I used positive $\arccos$ for the sake of simply demonstrating the method):
$$\frac{\pi}{2}-\alpha=\arccos{\frac{8}{17}+2\pi n}$$
$$\frac{\pi}{2}-\beta=\arccos{\frac{15}{17}+2\pi n}$$
adding both equations gives:
$$\alpha+\beta=\pi-\left(\arccos{\frac{8}{17}}+\arccos{\frac{15}{17}}\right)-4\pi n$$ but $$\arccos{\frac{8}{17}}+\arccos{\frac{15}{17}}=\frac{\pi}{2}$$
Therefore,
$$\alpha+\beta=\frac{\pi}{2}$$