Let $C$ a class such that $C$ generate $B(\mathbb{R})$ (Borel $\sigma$-Algebra).
Let $f:(X,\mathbb{A})\rightarrow\mathbb{R}$ a defined function in a measurable space a real values, then
$$f^{-1}(B(\mathbb{R}))\subset\mathbb{A}\iff f^{-1}(C)\subset\mathbb{A}$$
Note we have:
$$\sigma(f^{-1}(C))=f^{-1}(\sigma(C))$$
As $C$ generate $B(\mathbb{R})$ then
$$\sigma(C)=B(\mathbb{R})$$
then
$$\sigma(f^{-1}(C))=f^{-1}(B(\mathbb{R}))\subset\mathbb{A}$$
this because $f^{-1}(C)\subset \sigma(f^{-1}(C)).$
Is correct this?
For the other implications i don't have a clear idea