I want to prove the below:
$$\sum_{i=1}^n f_i^2 = f_n \times f_{n+1}$$
The example of $n = 1$ is trivial:
$$\begin{align} \sum_{i=1}^1 f_i^2 &= f_1^2 \\ &= 1^2 \\ &= 1 \times 1 \\ &= f_1 \times f_2 \end{align}$$
And working through $n=2$:
$$\begin{align} \sum_{i=1}^2 f_i^2 &= f_1^2 + f_2^2 \\ &\stackrel{?}{=} f_2 \times f_3 \end{align}$$
Using the definition of a Fibonacci number, I can work backwards from $f_2 \times f_3$:
$$\begin{align} f_2 \times f_3 &= (f_{2-1}+f_{2-2}) \times (f_{3-1}+f_{3-2}) \\ &= (f_1 + f_0) \times (f_2 + f_1) \\ &= f_1f_2 + f_1f_1 + f_0f_2 + f_0f_1 \\ &= f_1f_2 + f_1^2 \end{align}$$
Since $f_2 = 1$, $f_1f_2 = f_2f_2 = f_2^2$, thus $f_2 \times f_3 = f_1^2 + f_2^2$.
But how could I generalize this for any $n$ and not show examples for $n=3$, $n=4$, etc?