Calculate the derivative directly using first principles.
$\frac{\rm{d}}{\rm{d}x}\left(\tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right)\right) = \lim\limits_{x \to 0}\ \frac{1}{x}\left(\tan^{-1}\left(\frac{2(x+1)-1}{1+(x+1)-(x+1)^2}\right)-\tan^{-1}(1)\right) = \lim\limits_{x \to 0}\ \frac{1}{x}\left(\tan^{-1}\left(\frac{2x+1}{1-x-x^2}\right)-\tan^{-1}(1)\right)$
Now we simplify the numerator using inverse $\tan(x)$ formula i.e. $\tan^{-1}(A)- \tan^{-1}(B) = \tan^{-1}\left(\frac{A-B}{1+AB} \right)$ and get:
$\left(\tan^{-1}\left(\frac{2x+1}{1-x-x^2}\right)-\tan^{-1}(1)\right) = \tan^{-1}\left(\frac{x^2+3x}{-x^2+x+2} \right)$.
Therefore,
$\frac{\rm{d}}{\rm{d}x}\left(\tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right)\right)$at x= 1 is $\lim\limits_{x \to 0}\left(\frac{1}{x}\tan^{-1}\left(\frac{x^2+3x}{-x^2+x+2} \right)\right)$.
Solving the limit using L'Hopital rule, we get:
$\lim\limits_{x \to 0}\left(\frac{1}{x}\tan^{-1}\left(\frac{x^2+3x}{-x^2+x+2} \right)\right) =\lim\limits_{x \to 0} \frac{1}{1+\left(\frac{x^2+3x}{-x^2+x+2}\right)^2} = 1.$
So $1$ is the correct answer. Though the approach is a lengthy one, but works almost always.