I encountered the following hard problem in a math olympiad book:
Evaluate $$\sum^{2016}_{n=1}\frac{n(n+1)(n+2)(n+3)}{2016\cdot2017\cdot2018\cdot2019}.$$
I tried to evaluate $\sum^{k}_{n=1}\frac{n(n+1)(n+2)(n+3)}{2016\cdot2017\cdot2018\cdot2019}$ where $k=1$ to $10$ and got $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}, \frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}, \frac{10}{5}$ respectively. How can I prove that the pattern continues?