1

$z \in\mathbb{C}^{*}$ is a root of the equation $z+\frac{1}{z}=2\cos\frac{\pi}{2018} $ then $z^{2018}+\frac{1}{z^{2018}}$ has the value...the right answer is -2.

DaniVaja
  • 1,385

2 Answers2

3

Let $\theta:=\frac{\pi}{2018}$ so$$z^2-(e^{i\theta}+e^{-i\theta})z+1=0\implies z=e^{\pm i\theta}\\\implies z^{2018}+z^{-2018}=2\cos\pi=-2.$$

J.G.
  • 115,835
0

If $z+\dfrac1z=2\cos t$

$z^2+\dfrac1{z^2}=\left(z+\dfrac1z\right)^2-2=\cdots=2\cos2t$

Similarly, $z^3+\dfrac1{z^3}=\left(z+\dfrac1z\right)^3-3\left(z+\dfrac1z\right)=\cdots=2\cos3t$

Like Proving that $\frac{\phi^{400}+1}{\phi^{200}}$ is an integer.

using strong induction

$$z^{n+1}+\dfrac1{z^{n+1}}=\left(z^n+\frac1{z^n}\right)\left(z+\frac1z\right)-\left(z^{n-1}+\frac1{z^{n-1}}\right) =2\cos nt\cdot2\cos t-2\cos(n-1)t$$

By Werner Formulas

$$z^{n+1}+\dfrac1{z^{n+1}}=2[\cos(n-1)t+\cos(n+1)t]-2\cos(n-1)t$$

$$\implies z^{n+1}+\dfrac1{z^{n+1}}=2\cos(n+1)t$$