Prove that:
$$ 1-\frac{1}{2^{n}}+ \frac{1}{3^{n}} - \frac{1}{4^{n}} + \cdots = \left(1-\frac{1}{2^{n-1}}\right)\zeta(n) $$
where $n>1$ and: $$ \zeta(n) = 1+\frac{1}{2^{n}}+ \frac{1}{3^{n}} + \frac{1}{4^{n}} + \cdots $$
I have verified this is true using numerical method, but how to get the exact proof?